If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2v^2+4v+19=0
a = -2; b = 4; c = +19;
Δ = b2-4ac
Δ = 42-4·(-2)·19
Δ = 168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{168}=\sqrt{4*42}=\sqrt{4}*\sqrt{42}=2\sqrt{42}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{42}}{2*-2}=\frac{-4-2\sqrt{42}}{-4} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{42}}{2*-2}=\frac{-4+2\sqrt{42}}{-4} $
| B=7/4(j-45) | | 7m+3(2m-5)=12m+1/2(10m-6) | | -12-15b=-14b | | 2x+10=x+20=3x | | 13+12d=12=-19+13d | | 4+3r=-3 | | 4.05p+14.40=4.50(p+p) | | 1+7c=5c+15 | | 6r-5r=8 | | -30+6b=6(b-6) | | 22=p=30 | | (y+3)^2=81 | | 2(p+-3)=-10 | | 2x+10=x+20+3x | | -4+8b+3=-b+8 | | 5x-1=8x+12 | | 14m=-84 | | -18z+15z-(-19)=-20 | | 3-9u=-7-8u | | 19s-17s=12 | | 0.2c=-6.9c-19.17 | | 2x+8(133.3-x)=1200 | | 4b-19=-4(b+3)-7 | | 10v=-13+11v | | 6x-(x+2)+7=-3(-x+5) | | 3x-5=x-15. | | -11+7f-7f=-2f+7 | | 5n+1/2(10n+18)=15n-3(5n-4) | | y^2/35=36 | | 4x+80=17+20x | | 16+7x=22 | | 5x+3=2×+45 |